به نام ایرد دانا

(کاربرگ طرح درس) تاریخ بهروز رسانی:

نيمسال اول سال تحصيلي ٩٨-٩٩

دانتگده مهندس کانیک

رشد□ دکتر <i>ی</i> □	ىناسى■ كارشناسى ا	مقطع: كارث	<i>۳</i>	تعداد واحد: نظر	استاتیک	فارسى:	. 1.
منيازها:			پیشنیازها و هم	Statics	لاتين:	نام درس	
شماره تلفن اتاق: ۳۱۵۳۳۳۴۹–۰۲۳				مدرس/مدرسین: دکتر احمد قاسمی قلعه بهمن			
منزلگاه اینترنتی:				پست الکترونیکی: ghasemi@semnan.ac.ir			
برنامه تدریس در هفته و شماره کلاس: شنبه ۱۰–۱۲ و دوشنبه ۱۵–۱۷							برنامه تدريس
اهداف درس: در این درس با مفاهیمی چون محاسبات برداری، نیرو، گشتاور یا ممان، گشتاور حول یک نقطه یا یک محور،کوپل، ورنچ،							
دیاگرام آزاد، تعادل ذره و جسم صلب در دو یا سه بعد، نیروهای داخلی، تیرها و بار گسترده، تحلیل خرپا به دو روش مفاصل و مقاطع،							
تحلیل قاب و ماشین، اصطکاک، ممان اول و دوم سطح آشنا خواهیم شد.							تحليل قاب
امکانات اَموزشی مورد نیاز: –							امكانات آمو
امتحان پایان ترم	امتحان ميان ترم	ىتمر(كوئيز)	ارزشیابی مس	موزشی	فعالیتهای کلاسی و آ	بی	نحوه ارزشيا
۵٧/۵%	۳۵٪				٧/۵٪.		درصد نمره
F. Beer, E. R. Johnston Jr., D. Mazurek, Vector Mechanics for Engineers: Statics , 10th edition, 2012					ذ درس	منابع و مآخ	

بودجهبندی درس

توضيحات	مبحث	شماره هفته
	•	آموز ش <i>ی</i>
	Introduction	١
	Fundamental Concepts	
	Systems of Units	
	Forces in a Plane	۲
	Resultant of the Forces	
	Addition of Vectors	
	Rectangular Components: 2D	
	Equilibrium of a Particle in a Plane	٣
	Free-Body Diagrams	
	Forces in Space	٤
	Rectangular Components: 3D	
	Addition of Concurrent Forces in Space	
	Equilibrium of a Particle in Space	
	Moment of a Force about a Point	٥
	Scalar Product	
	Mixed Triple Product	
	Moment of a Force about a Given Axis	٦
	Moment of a Couple	
	Resolution of a Given Force into a Force and a Couple	٧
	Reduction of a Force-System to One Force and One Couple	
	Equivalent Systems of Forces (Vectors)	
	Reduction of a Force-System to a Wrench	

Equilibrium of Rigid Bodies	٨		
Free-Body Diagram			
Reactions at Supports and Connections: 2D			
Equilibrium of a Rigid Body: 2D			
Statically Indeterminate Reactions			
Equilibrium of a Two-Force Body	٩		
Equilibrium of a Three-Force Body	·		
Equilibrium of a Rigid Body: 3D			
Reactions at Supports and Connections: 3D			
Distributed Forces: Centroids and Centers of Gravity	1+		
Center of Gravity: 2D & 3D	,		
Centroids and First Moments of Areas and Lines			
Distributed Loads on Beams			
Analysis of Structures	11		
Simple Trusses	, ,		
Method of Joints			
Special Joint Conditions	١٢		
Space Trusses			
Method of Sections			
Analysis of Frames	١٣		
Analysis of Machines			
Forces in Beams	18		
Internal Forces	, -		
Shear and Bending Moment			
Friction	10		
Dry Friction			
Coefficients of Friction			
Angles of Friction			
Wedges			
Distributed Forces: Moments of Inertia	١٦		
Moment of Inertia of an Area			
Radius of Gyration			
Parallel-Axis Theorem			
Product of Inertia			